157 research outputs found

    Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders

    Get PDF
    Autism spectrum disordersTrastorns de l'espectre autistaTrastornos del espectro autistaGenetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.This work was supported by the CHOP/UPENN IDDRC-New Program Development award, CHOP-Junior Faculty Pilot Program award, Margaret Q Landerbergen Foundation Award and NIH/NINDS R01NS119699, NIH/NICHD R21HD107592 (to N.A.), NIH/NINDS R35NS116843 (to H.S.), NIH/NINDS R35NS097370 and NIH/NIMH RF1MH123979 (to G.-l.M.)., BFU2015-69248-P and PGC2018-096082-B-I00 from the Spanish Ministry of Economy (to M.A.M.B.), Alabama Genomic Health Initiative F170303004 through University of Alabama at Birmingham (to A.C.H., M.T.), PID2019-111217RB-I00 Spanish Ministerio de Ciencia e Innovación (to X.D.L.C.), ID2019-110157RA-I00 (to M.S.), FPU Spanish Ministry of Education and Science predoctoral fellowship (to R.F.) and 2021 FISDU 00400 (to P.E-B.), NIHR Manchester Biomedical Research Centre NIHR203308 and Solve-RD which is supported by the European Union’s Horizon 2020 research and innovation program grant agreement No 779257 (to S.B.). This research was made possible through access to the data and findings generated by the 100KGP and the DDD. The 100KGP is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100KGP is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK and the Medical Research Council have also funded research infrastructure. The 100KGP uses data provided by patients and collected by the National Health Service as part of their care and support. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003], a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute [grant number WT098051]. The views expressed in this publication are those of the author(s) and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network

    Biallelic variants in PCDHGC4 cause a novel neurodevelopmental syndrome with progressive microcephaly, seizures, and joint anomalies

    Get PDF
    Purpose: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition.Methods: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable.Results: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4.Conclusion: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Consolidating the association of biallelic MAPKAPK5 pathogenic variants with a distinct syndromic neurodevelopmental disorder

    Get PDF
    BACKGROUND: MAPK-activated protein kinase 5 (MAPKAPK5) is an essential enzyme for diverse cellular processes. Dysregulation of the pathways regulated by MAPKAPK enzymes can lead to the development of variable diseases. Recently, homozygous loss-of-function variants in MAPKAPK5 were reported in four patients from three families presenting with a recognisable neurodevelopmental disorder, so-called 'neurocardiofaciodigital' syndrome. OBJECTIVE AND METHODS: In order to improve characterisation of the clinical features associated with biallelic MAPKAPK5 variants, we employed a genotype-first approach combined with reverse deep-phenotyping of three affected individuals. RESULTS: In the present study, we identified biallelic loss-of-function and missense MAPKAPK5 variants in three unrelated individuals from consanguineous families. All affected individuals exhibited a syndromic neurodevelopmental disorder characterised by severe global developmental delay, intellectual disability, characteristic facial morphology, brachycephaly, digital anomalies, hair and nail defects and neuroradiological findings, including cerebellar hypoplasia and hypomyelination, as well as variable vision and hearing impairment. Additional features include failure to thrive, hypotonia, microcephaly and genitourinary anomalies without any reported congenital heart disease. CONCLUSION: In this study, we consolidate the causality of loss of MAPKAPK5 function and further delineate the molecular and phenotypic spectrum associated with this new ultra-rare neurodevelopmental syndrome

    Bi-allelic truncating variants in CASP2 underlie a neurodevelopmental disorder with lissencephaly

    Get PDF
    Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function

    Biallelic variants in OGDH encoding oxoglutarate dehydrogenase lead to a neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities

    Get PDF
    PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities

    Pure cerebellar ataxia due to bi-allelic PRDX3 variants including recurring p.Asp202Asn

    Get PDF
    Bi-allelic variants in peroxiredoxin 3 (PRDX3) have only recently been associated with autosomal recessive spinocerebellar ataxia characterized by early onset slowly progressive cerebellar ataxia, variably associated with hyperkinetic and hypokinetic features, accompanied by cerebellar atrophy and occasional olivary and brainstem involvement. Herein, we describe a further simplex case carrying a reported PRDX3 variant as well as two additional cases with novel variants. We report the first Brazilian patient with SCAR32, replicating the pathogenic status of a known variant. All presented cases from the Brazilian and Indian populations expand the phenotypic spectrum of the disease by displaying prominent neuroradiological findings. SCAR32, although rare, should be included in the differential diagnosis of sporadic or recessive childhood and adolescent-onset pure and complex cerebellar ataxia

    Novel NDUFA12 variants are associated with isolated complex I defect and variable clinical manifestation

    Get PDF
    Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect

    Novel homozygous variants in PRORP expand the genotypic spectrum of combined oxidative phosphorylation deficiency 54

    Get PDF
    Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNAIle cleavage, consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP c.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that PRORP variants are associated with COXPD54 and that the assessment of 5' leader mitochondrial tRNA processing is a valuable assay for the functional analysis and clinical interpretation of novel PRORP variants

    GGPS1-associated muscular dystrophy with and without hearing loss

    Get PDF
    Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy
    corecore